Definitive Guide to Router Vacuum Tables and Pumps for CNC & DIY

Last modified: May 14, 2024

Introduction

Large metal table with blue vacuum hoses and grid-patterned surface.

Vacuum Table with zoned sub-plenum plumbing. Image via Techno-CNC...

Vacuum Tables are often the best solution for the flat sheet work often being done on CNC Routers. You can lay an MDF spoilboard right on top of a vacuum table and it's porous enough to still pull a vacuum. Granted, unless you have a lot of vacuum available, you may want to seal part of the spoil board so the area receiving the vacuum is limited. Vacuum tables can be set up with zones that can be turned on and off with valves as well.

Note: If you're looking for information on Vacuum Chucks and Fixtures for VMC's, we have a page for that too.

Vacuum Table Basics

Vacuum Tables generate hold-down force because of the difference between a vacuum under the part and atmospheric pressure pushing down from above. Every square inch of area exposed to that difference can have a force as much as 14.7 lbs pushing down on it (the difference between 0 and sea level air pressure).

The hold-down force is proportional to that pressure difference and the surface area exposed to the difference. A large area on a large part can have significant force. A 10" x 10" square part potentially has 100 square inches times 14.7 lbs per square inch or almost 1500 lbs of holding force!

Meanwhile, small parts have much less force holding them down. It's important to be aware of that difference.

Another way force can be limited is you may not be able to apply the vacuum to the entire bottom surface of the part. Consider a vacuum system built out of aluminum with small vacuum chambers underneath. It looks something like this:

Stainless steel vacuum table with numerous holes and vacuum hose attachment.

Vacuum table with small chambers...

Now in order to keep the part flat, and not bowed, we want it to sit flat on the vacuum table. We may not get much vacuum anywhere except where the chambers are. In that case, it is the surface area of the chambers and not the surface area of the part that will determine the hold-down force, and that's much less than the surface area of the part.

Most CNC Router Vacuum Tables avoid this problem by using an MDF board atop the vacuum table to spread the vacuum. MDF is porous, so vacuum goes everywhere. This works well, but it does require a vacuum pump that can pull a greater volume of air through because the MDF will leak wherever there's not something lying on it.

Just as MDF can be used to spread the vacuum, your part may leak vacuum if it is made of anything permeable (foam board, MDF, that sort of thing) or if you introduce too many through holes into it during the machining.

The last thing to know is that there are two forces trying to upset the part on the vacuum table. One is side-force and the other is up-force. Side force is a function of friction between the part and what it is laying on. Be sure the vacuum table surface is not too slippery to provide holding against side force. Most of the time, the coefficient of friction will be such that it takes at least twice the force to move the part sideways as it does to lift the part.

The up-force needed to overcome the holding force is just a function of the weight of the part plus the hold-down force due to vacuum. If the part is lifted even a little, perhaps not enough you can see, you'll leak vacuum and unless your vacuum pump has a lot of capacity, the part will soon pop off as vacuum drops. If the up-force is enough, the part could even be flung across the table.

DIY CNC Router Vacuum Tables

Building a vacuum table for your CNC Router (or Mill) is pretty straightforward. In this article, we go over a bunch of ideas, tips, and links to resources that will help you put together your own vacuum table project in short order.

Do I need to buy or can I purchase and fit a vacuum table to my CNC Router?

Don't have time to build a vacuum table from scratch? No worries, there are a number of them commercially available. Here's just a sampling to evaluate:

Metal surface with rows of small holes and industrial pipes.

Clampusystems offers a variety of add-on vacuum tables, components, and accessories...

A CNC step motor with a red body, blue cable, and silver base plate.

CNCStep vacuum table...

Hand holding magnifying glass over precision grid table.

NEMI vacuum grid table...

Vacuum chuck system with blue base and various components, featuring a small metal object and a gray rectangular object with grid pattern.

Pierson vacuum chuck system...

Tormach vacuum chuck with metal construction and logo.

Tormach Vacuum Chuck. Tormach has a variety of vacuum workholding solutions...

DIY Vacuum Table Design

First thing to consider is Z clearance if you're going to set a vacuum table atop your existing CNC Router table. You've only got so much travel in your Z axis and a vacuum table is going to take some of it away. Be sure to think about how to minimize that loss. This is where specifying a built-in vacuum table when you buy your CNC Router Table can have an advantage.

Another important consideration is whether you're going to create some sort of plenum design or whether you plan to actually machine your vacuum table. Machined tables can be more accurate-flatter and more square. They're certainly more durable too. But a plenum-style table may be cheaper to build and less restrictive on vacuum passages.

There is a key trade-off to consider and that is the ability of the table to support your part versus the surface area that's available for vacuum to do its job holding down parts. If the part is resting on a surface that is not permeable to air, then only the passages that pull vacuum are exerting force. On a machined aluminum vacuum table, you only get much vacuum from the surface area of the grid and not the whole surface area the part rests on. If you try to create a cavity under the part to spread more vacuum, you run the risk of stressing the part so it is bowed in the unsupported areas if you let them get too large.

The beauty of having your top surface be something like MDF is that it is permeable, and the vacuum can access the whole surface area of the bottom of the part. However, MDF is likely a less accurate support than aluminum and it will require a vacuum source that can pull more CFM of air out because there is a much larger area that leaks vacuum.

Assuming you don't have a giant vacuum pump with unlimited CFM capacity, one facility that really helps is the ability to zone the vacuum areas so that areas that leak (perhaps because the part doesn't sit on those areas) can be shut off from vacuum. Here is a vacuum table that has a zoning system that is very convenient to change just by opening or closing some valves:

Large metal table with blue vacuum hoses and grid-patterned surface.

Vacuum Table with zoned sub-plenum plumbing. Image via Techno-CNC...

Here's a list of photos and links to various DIY vacuum table projects. It'll stimulate your ideas as you design your own vacuum table project.

Make Magazine's Shopbot Vacuum Table

There's a great vacuum table build over on Make.

Vacuum table air flow system with bleeder board, baseboard, and plenum.

A typical MDF vacuum table has a plenum board with grooved passages and a bleeder board that allows vacuum to seep through its porous structure...

A close-up photograph of a plenum board with rectangular tan blocks in a grid pattern.

Closeup of the plenum board...

Although both the plenum board and the bleeder board are made of MDF, we don't want the plenum board to leak vacuum, so we apply wood sealer to close up the pores:

Person in blue gloves applying protective coating to wooden object with small squares and central hole.

The plenum has to be sealed so it won't leak vacuum. Easy to do by applying sealer...

A beige vacuum motor with silver fan and black cord on a rectangular base.

A vacuum motor is mounted to power the vacuum table...

RC Groups Vacuum Table

Here's a neat little vacuum table project from RCGroups.com:

A vacuum table with a white surface and red/black knobs attached to a wooden frame.

It's powered by a ShopVac and is designed to simply be clamped down to your CNC Router. The table was made from HDPE plastic. To stop leaks in areas not being used, just use a piece of posterboard cut to fit closely around your part or workpiece:

Vacuum table with yellow insert and black hose, used in machining processes.

Romax CNC Build

Here's a little vacuum table intended to go into a milling chuck. There's a complete build up described over on the Romax CNC forums.

A rectangular metal plate with a grid pattern and a cylindrical protrusion.

Neat little vacuum table fits in your milling vise...

Handheld machinist tool with long handle, cylindrical body, and small nozzle.

This builder likes these "PIAB" vacuum generators that are available on eBay cheaply used...

Small, cylindrical device on aluminum block with hole and white tube connection.

Another view of the PIAB. The long can is a silencer. These are basically just nice venturi vacuum pumps. Hard to beat the price of a used one from eBay.

Vacuum Pumps for CNC Router Tables

The heart of any cnc vacuum table is the cnc vacuum pump. There are several kinds available. A "Regenerative Blower" is typically a centrifugal impellor type:

Gray vacuum pump with yellow accents, cylindrical shape, and horizontal ridges.

A typical Regenerative Blower for use as a CNC Router Vacuum Pump...

Regenerative Blowers are capable of moving a lot of air (CFM = Cubic Feet Per Minute), but they won't pull as strong a vacuum. The strength of the vacuum is measured in inches of mercury, often abbreviated as "Hg". -30 Hg is 0 pressure-a perfect vacuum. -15 Hg is about half normal air pressure. At sea level, air pressure is 14.7 pounds per square inch, so -15Hg would be about 7.4 pounds per square inch. A typical regenerative blower might generate say 4 to 5 lbs per square inch (8 to 10Hg) versus one of the other types that can generate the full 14.7 lbs per square inch. As you can see, given the same CFM capacity,. these other vacuum pump types can clamp the work significantly harder. Or, looked at another way, they can apply the same force to much smaller parts.

Another way to think about it is the amount of vacuum (Hg) determines how hard the part is held down while the CFM capacity is used to deal with leaks. You either need enough CFM for all the leaks or you need to spend more time controlling the leaks.

Other types of vacuum pump include rotary vane and liquid ring pumps, which can pull a stronger vacuum, but to get the large volume of air will cost more:

Silver rotary vane vacuum pump with red accents against a white background.

Rotary vane oil-less vacuum pump...

An oil-sealed liquid ring vacuum system with a large cylindrical tank and small cylindrical component, featuring a tan color scheme and pipes and tubes.

Liquid-ring vacuum pump...

The strength of the vacuum determines how much of the air pressure is actually going to work to hold down your workpieces. Less vacuum means less pressure. But you have to trade that off against the CFM capacity. If you are leaking a lot of the vacuum, more CFM capacity is needed to keep the vacuum low enough to do its job.

Vacuum Tables face a trade off between the amount of vacuum they can pull with their vacuum pump, leakage (which is working to reduce the vacuum), and the surface area of the part that the vacuum can act on. Big flat parts don't need as much vacuum as small parts. The less powerful your vacuum pump, the more time you'll spend trying to stop leakage so that enough vacuum is left for the parts. The smaller the surface area on the parts, the more vacuum is needed to keep them solidly in place.

How large a vacuum pump do I need for my CNC Router table?

The bigger the table, the more pump. A rule of thumb is 25 HP on 4 ‘x 8′ table and 40 HP on 5′ x 10'. That rule of thumb leaves aside the issue of how much vacuum the pump can pull-a regenerative blower in that range is a lot cheaper than a rotary vane type. Are there tables with lower HP pumps? Absolutely! But the lower the HP, the more problems you'll have with leaks and small parts. On a 4′ x 8′ table, 12 HP is about the minimum for good performance.

The thing is, too small a vacuum pump means extra work every time you run the CNC Router to deal with leaks, work around parts breaking loose, and possibly even engineering other workholding solutions. It's worth it not to skimp on your vacuum pump!

In addition to HP ratings, consider the CFM rating. A pump will be rated on two dimensions-how much vacuum can it pull (i.e. how low a pressure) and how much air can it move to offset leaks. A leaky vacuum system with 4′ x 8′ MDF spoilboards needs 200 CFM or more to offset the leaks. The more you can seal up the leaks, the lower the CFM you can get by with.

Can a vacuum pump be too large? What about multiple pumps?

Now you're on to something. If you run more vacuum than you need, you're wasting the cost of the pump. For these situations, it may make sense to have two smaller-capacity pumps. Run one when parts are large enough they don't need maximum vacuum for hold down-remember, hold-down force is proportional to surface area and larger parts are held more securely. Fire up the second pump for small parts.

Let's suppose you can't afford a big expensive vacuum pump, are you just out of luck? Not at all! See below for how you can use our G-Wizard software to prevent part pop off even so.

DIY Vacuum Pumps

High horsepower pro-quality vacuum pumps can be pretty expensive, so here are some thoughts for the DIY'er trying to cut a few corners:

A vacuum motor with a cylindrical shape and a black and gray color scheme.

A vacuum motor...

Liquid Separators

Are you using coolant with your vacuum table (hint: most CNC Routers won't)? If so, you need a liquid separator. Sending coolant back to your vacuum pump is a bad idea for most vac pumps. A liquid separator can be very simple-just a tank that dumps down vertically from the top and pulls vacuum off the top. Very little liquid will be pulled from the bottom of the tank where it pools. Such a system will need a sight glass or other means of telling when it's time to drain the fluid out before continuing.

Industrial coolant trap system installed on machinery in a machine shop or metal fabrication facility.

Simple Liquid Separator or coolant trap made from a water filter cannister. This one is fairly low capacity so suitable only for smaller vacuum fixtures, but it is easy to see when it is getting full...

Vacuum Table Part Pop-Off

When cutting forces exceed the hold-down force a vacuum table can pull, the part pops off and is generally ruined. This is a common problem for vacuum table users, especially for smaller parts that don't have much surface area and for users that may have limited vacuum pump capacity.

Until now, fixing the problem has been hit or miss, but our G-Wizard Calculator software now has the ability to limit cutting forces to what your vacuum table can handle. For more information, check out our article on this special feature:

Computer-generated dialog box for machining and CNC machine calculations.

G-Wizard has a built-in facility to limit cutting forces to avoid vacuum table pop off...

Tips for Vacuum Table Usage

Metal spindle foot with square base and four cylindrical rods on a light blue background.

Pressure foot clamps to spindle. Image via RicoCNC.com...

I'm working on a 4'x4′ CNCRouterParts machine. I purchased the basic model, and have added to over time. I'm using a Bosch router rather than a spindle - being in the garage in Alberta it seemed like the best choice.

Anyways, I've been cutting type out of acrylic. To aid with hold down I made a vacuum table, using a shop vac as the pump, and it has served me well; however, despite the use of dial indicators and surfacing I haven't quite gotten the z accuracy down to the 0.003 that it requires in order to use the plastic backing on the acrylic as a fixturing aid. If the bit is just too high I end up with an edge around some of the type. If the backing is cut, vacuum is lost, little parts fly around the garage, the vacuum table surface is marred, etc.

Recently I discovered a way to alleviate my troubles. I cut the panels from a cereal box, and using spray glue I affixed them to the plastic backing of the acrylic - in essence, creating a cardboard spoilboard. The cardboard is thick enough that I can cut into it without cutting through it. I glued the plastic to the raw side, and used the coated side to aid with achieving a solid vacuum hold. Problem solved.

The cardboard has very little flex, but it is enough that the plunge speed may need to be adjusted so it doesn't ‘pop' the bit as it pushes through, possibly fracturing the material being cut.

Be the first to know about updates at CNC Cookbook

Join our newsletter to get updates on what's next at CNC Cookbook.