Step and Servo Motor Sizing Software for CNC

Last modified: March 6, 2024

I see a lot of folks wondering what size motors they need for their CNC conversion projects.  Is biggest always best?  How fast will it go?  Lots of questions.

Because of that, I decided to put some of the calculations I routinely use into our G-Wizard CNC Calculator's latest release (1.641).  The calculation screen looks like this:

Screenshot of CNCCookbook.com calculator for stepper motor sizing.

G-Wizard Servo and Stepper Motor Sizing Calculator...

Let's go through each line and see what it's purpose is and how to use the calculator.

We start with the Peak Torque Calculation.  It's purpose is to determine what axis speed you'll have when your motor is operating at peak torque.  I like to make this the rapids speed for a machine so that the peak is matched to the fastest motion.  To calculate the axis speed at peak torque, enter the following:

From this information, G-Wizard will calculate:

In general, you should assume this will be the absolute fastest you'll be able to run your CNC, and you may have a hard time achieving this number due to a variety of factors.  If the motor's torque can't apply enough force in a short enough period of time, the axis may not accelerate fast enough to reach the speed before it gets to end of travel.  Or, your cnc controller may not be able to generate enough steps per second to command this much speed.  More on this in a moment.

The second section is all about Resolution.  Resolution is a measure of the smallest motions your system is capable of.  Note that it may not be capable of performing such small motions repeatably, which would mean its accuracy is less than its resolution.  In no event will accuracy ever be greater than resolution.

To calculate the resolution information, we need two values:

Microsteps/full step

Holding Torque/Microstep

1

100.00%

2

70.71%

4

38.27%

8

19.51%

16

9.80%

32

4.91%

64

2.45%

128

1.23%

256

0.61%

As you can see, that 256 microstep resolution is an illusion-there's only 0.61% of holding torque available at that resolution.

This entry has a different purpose for servos.  Most servo encoders are quadrature encoders, which means they generate 4x the pulses their resolution would imply.  So we enter a "4" under microsteps for these encoders.

Given this information, G-Wizard will calculate the following:

The last value we can calculate is the maximum following error before the system will report a servo fault.  For example, my machine uses Gecko 320 drives for the servos, and they fault if the axis falls behind by 128 pulses.  So, I enter 128 and it tells me my system will fault if the axis falls behind the commanded position by more than 0.0045".

This calculator is not a full sizing calculation.  I think of it as more of a sanity check.  But, it can be helpful as you're looking at various motor options.  In the future, I'll probably add more bells and whistles to it.

Be the first to know about updates at CNC Cookbook

Join our newsletter to get updates on what's next at CNC Cookbook.