Show Me How to Improve Speeds and Feeds For

Machining Tungsten and Alloys: Feeds and Speeds Guide

This article is a guide to machining Tungsten and its allows along with Feeds and Speeds recommendations.  It’s part of CNCCookbook’s material-specific machining guides.

Tungsten Properties

Tungsten is a hard, rare metal with chemical symbol W.  It is also known as “Wolfram“.

It has many unique properties, for example, the melting point of Tungsten is the highest of any element yet discovered–it melts at 3422C (6192F)!

Tungsten’s density is 19.3 times that of water and comparable to the density of uranium or gold.  It is nearly 2x denser than lead.

Table of Tungsten Chemical Properties

  • Atomic Number (Z): 74
  • Group, period:  group 6, period 6
  • Block: d-block
  • Element category: transition metal
  • Standard atomic weight (Ar): 183.84
  • Melting point 3695 K ​(3422 °C, ​6192 °F)
  • Boiling point 6203 K ​(5930 °C, ​10706 °F)
  • Density near r.t. 19.25 g/cm3, when liquid, at m.p. 17.6 g/cm3
  • Heat of fusion 52.31 kJ/mol[3][4]
  • Heat of vaporization 774 kJ/mol
  • Molar heat capacity: 24.27 J/(mol-K)

Tungsten Uses, Parts, and Products

The element’s high melting point and density suggest its many uses.

Approximately half of the world’s Tungsten production is consumed producing Tungsten Carbide, the familiar material many cutting tools are made of that is often referred to simply as “Carbide”.

Tungsten vs Tungsten Carbide

Tungsten Carbide is a chemical compound containing equal parts of Tungsten and Carbon.  In it’s most basic form, Tungsten Carbide is a gray powder, but it can be pressed and formed into shapes.  It is approximately two times stiffer than steel and double the density of steel.

It’s hardness and resistance to heat are what make it an ideal material for cutting tools.

Other Tungsten Uses

There are many other important uses for Tungsten and its alloys including:

  • Lighting filaments and heating elements
  • Electroides
  • Electrical contacts
  • Glass to metal seals (it’s rate of expansion is similar to glass)
  • X-Ray targets when creating X-Rays
  • High Speed Tool Steel and other alloys contain tungsten
  • Flourescent lighting
  • Balancing applications (benefit from high density)
  • Rocket engine nozzles and similar high temperature propulsion applications
  • Armaments, for example as an alternative to depleted uranium
  • Radiation shielding


Tungsten weights inserted in crankshaft for balancing…

Tungsten Alloys and Copper Tungsten

Copper Tungsten is a mixture of copper and tungsten.  The two are not mutually soluble, so the mixture consists of distinct particles of each metal.  Adding copper to tungsten results in a material that is heat-resistant, electrically conductive, and easier to machine.  This makes these materials a good choice for electrical contacts.

There are various standards for Tungsten Alloys such as ASTM-B-777 and AMS-T-21014.

Here is hardness information for some of these common alloys:

Alloy Condition Brinell HRc
Tungsten Alloy, AMS-T-21014 Class 1 Post Sinter Heat Treated 271 28
Tungsten Alloy, AMS-T-21014 Class 2 Sintered 286 30
Tungsten, W (Pure Element)   294 31
Tungsten Alloy, AMS-T-21014 Class 1 Sintered 301 32
Tungsten Alloy, AMS-T-21014 Class 3 Sintered 301 32
Tungsten Alloy, AMS-T-21014 Class 1 Swaged After Sintering 311 33
Tungsten Alloy, AMS-T-21014 Class 2 Swaged after Sintering 421 45
Tungsten Alloy, AMS-T-21014 Class 3 Swaged after Sintering 442


Machining Tungsten

Several properties of Tungsten and its alloys make it difficult to machine:

  • It’s dense, so is very demanding of the machine’s torque capabilities.  Be sure your machining has sufficient torque at the relatively low rpms that will be used to machine tungsten.
  • It’s brittle and easily cracked or chipped.  It also chips cutting tools very easily.
  • It must be machined at high temperatures–well above its transition temperature.  Failure to do this will result in cracking or lamination.
  • Prefer cutting edges with a generous radius to reduce the tendency to chip.
  • Tungsten has high elastic stiffness relative to other materials, so it produces greater cutting forces.  Be sure your setups and tooling are as rigid as possible.
  • Given the density, rigidity, and brittleness of the material, vibration control is extremely important to machining success.  Even a little vibration will chip tools rapidly.
  • Use premium tooling and keep it sharp.  Replace as soon as it dulls.
  • Some sources suggest air is preferred over flood coolant.  Others crank up the coolant concentration relative to water and report success.

In most cases, alloys are much preferred over pure Tungsten which is the most problematic to machine.  The machining of Tungsten Alloys has been compared to machining gray cast iron (it’s highly abrasive) or in some cases, stainless steel.

One article in MMSOnline suggests it is “much tougher to machine than titanium.”

Drilling Tungsten

Carbide tipped or solid carbide drills are preferred.

Tapping Tungsten

Use straight flute, high alloy taps.  For small holes, thread forming taps can be used.

Turning Tungsten

Positive rake carbide tooling is recommended.

Milling Tungsten

Climb milling recommended where possible.

Feeds and Speeds for Tungsten

Many report success using feeds and speeds similar to gray cast iron.  Our G-Wizard Feeds and Speeds Calculator is fully calibrated for machining Tungsten and includes multiple alloys in its Material Database.

Machining Tungsten and Alloys: Feeds and Speeds Guide
5 (100%) 1 vote